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KI/iy, Randall, and Foulis established that the signed weight space of the tensor 
product of two quasimanuals each having a positive, finite-dimensional state 
space is isomorphic to the algebraic tensor product of the signed-weight spaces 
of the factors. We obtain a generalization of this result for arbitrary quasi- 
manuals. A compactness condition due to Cook here called discreteness is 
discussed and shown to be preserved under the formation of tensor products. It 
is shown that the predual of the signed weight space of a tensor product of 
discrete manuals is the projective (ordered) tensor product of the preduals of the 
signed weight spaces of the factors. 

1. I N T R O D U C T I O N  

Over the last several decades, and especially since the work of  Mackey 
(1965), many  attempts have been made to frame a generalized measure or 
probabil i ty theory broad enough to accommodate  quantum mechanics as a 
special case, while avoiding any ad hoc imposition of  linear or *-algebraic 
structure on the space of  observables. These include the theory of measures 
on or thomodular  lattices and posets (Gudder,  1988), various theories consid- 
ering convex sets as abstract state spaces (e.g., Mielnik, 1968, Davies, 1976), 
and the theory of  states or stochastic functions on hypergraphs or manuals 
(Foulis and Randall,  1981). 

A serviceable generalized measure theory ought to provide a device--  
let us speak of  a " tensor p roduc t " - -whereby  a model of  a complex system 
comprised of  noninteracting components  can be constructed from the mod-  
els o f  the components.  In classical probabili ty theory, one forms products 
of  a-fields; in or.thodox quantum mechanics, one forms tensor products o f  
Hilbert spaces. The matter  is problematic in more general theories: Various 
accounts suffer from either the absence of, or the proliferation of  candidates 
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for, such a product. For instance, in Foulis and Randall (1981) it is shown 
that the category of orthomodular posets admits no reasonable tensor 
product; on the other hand, there are at least two natural tensor products 
for convex sets and ordered Banach spaces (Namioka and Phelps, 1969; 
Wittstock, 1974)--the injective and the projective tensor product. These coin- 
cide in the case of classical measure theory, but are in general quite different. 
Neither corresponds to the tensor product in quantum mechanics. 

In contrast, there does exist a heuristically and technically natural tensor 
product for quasimanuals (Foulis and Randall, 1981; Lock, 1981) (for the 
definition, see Section 3). This tensor product is well-behaved for quasi- 
manuals with finite-dimensional state spaces in the following sense. If d 
denotes a quasimanual, denote by V(d) the signed weight space of d ,  i.e., 
the linear hull of d ' s  state space, f~(d)  is said to be positive iff for all xeX, 
there exists a state co ef~ such that c0(x)> 0. 

Theorem 1.1 (Klfiy, Randall, and Foulis, 1987). Let d and ~ be quasi- 
manuals with positive, finite-dimensional state spaces, and let d ~  be their 
(pre-) tensor products. Then V(d~)  ~- V(d) | V(~). 

In what follows we extend this result in two ways. First, we prove a 
straightforward lemma characterizing V(dg),  for arbitrary quasimanuals 
~r and &, as the space of regular weak*-to-weak continuous operators from 
V*(d) to V(~). As an immediate corollary, we recover Theorem 1.1, less 
the hypothesis of positivity. Second, we show that if V(d) and V(~) are 
the duals, respectively, of the linear spans Lo(d) and Lo(g) of the evaluation 
functionals associated with outcomes of d and ~,  then d : ~  again has this 
property, and 

Lo( d ~ )  = Lo( ~/) | Lo( &) 
where the tensor product on the right is the projective tensor product of 
ordered normed spaces. 

We begin with some background material on signed weight spaces. The 
exposition derives from the paper of Cook (1985); certain results of that 
paper are extended. We suppose the reader to be familiar with the rudiments 
of the theory of ordered linear spaces, as outlined, e.g., in Alfsen (1971), 
and also with basic manual-theoretic notions, as outlined, for instance, in 
Gudder (1988). Throughout this paper, we denote the positive cone of an 
ordered vector space V by V+, and the positively-generated part of V, i.e., 
the space V+ - V+ of regular elements of V, by V +. The extreme boundary 
of a convex set A is denoted by 0A. 

2. SPACES OF SIGNED WEIGHTS 

Let d be a quasimanual with outcome set X(d)  and state space ~ ( d ) .  
A signed weight on d is a linear combination (in R x) of states; the space of 
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all such--the signed weight space of d - - i s  denoted by V(~). Recall that if 
d is a premanual, then every state on d extends uniquely to the manual 
closure ( ~ ) ;  hence V ( d ) =  V ( ( d ) ) .  The state space of d is a base for the 
positive cone of V(d)  [ordered pointwise on X(d)] .  It can be shown (Cook, 
1985) that the base-normed space (V(~) ,  f l ( d ) )  is always complete. It 
follows that the dual V*(~)  of a signed weight space is a complete order- 
unit normed space. 

To every event A of d there is associated an element fA of the order 
interval [0, e] of V* given by fA(CO)=~x~A C0(X). We write fx for ]ix}. If 
Eez4, then fE=e.  We will denote the span in V*(d)  of the functionals fA 
by L ( d ) ,  and the span of those functionals fA arising fromfinite events by 
Lo(~g). Note that L ( ~ )  is an order-unit normed space, while Lo(~ r is 
generally not. 

Example 2.1. (1) If d consists of a single set E, then V(d)~-ll(E). 
Now, L ( d )  consists of the functions on E having finite range; hence, L ( d )  
is dense in V* = l~~ Lo(d) consists of the finitely nonzero functions on 
E, hence/Zo(~) ~-co(E). (2) Let (S, Z) be a measurable space. The associated 
partition manual d(S,  Z) consists of all countable partitions of S by non- 
empty Z-measurable sets. f l ( d )  consists of the o'-additive probability meas- 
ures on (S, Z) and V(~') is the space of all or-additive measures on (S, X). 
Lo(~ r and L ( d )  coincide and may be identified with the space of simple Z- 
measurable functions. (3) Let It be a o--additive probability measure on 
(S, X). Let ~ u  be the collection of countable partitions of the identity in 
the measure algebra Z/It. We can identify ~ ( d u )  with the convex set of It- 
absolutely continuous probability measures on (S, Z); hence V(d)~-L~(p). 
Now, Lo(d) = L ( d )  corresponds to the space of simple functions in L~(it). 
(4) Let H be a Hilbert space (real or complex). The associated frame manual 
~ ( H )  consists of the maximal orthonormal subsets of H. If dim(H) > 2, 
Gleason's theorem provides an isomorphism between V(~') and the self- 
adjoint trace-class of H. We can identify Lo(~-J) with the space of finite-rank 
self-adjoint operators on H and its closure [in V*(~ with the space of 
self-adjoint compact operators on H. 

In certain cases, it is reasonable to assume that the set of states of a 
physical system is compact in some locally convex topology. In the classical 
setting, where the state space is the convex set of regular Borel probability 
measures on a locally compact Hausdorff space S, the topology one has in 
mind is the relative weak-* topology inherited from ~g(S)* by the usual 
identification of such measures with Radon measures. In contrast, the weak- 
est topology naturally supplied by the construction of an arbitrary signed- 
weight space V(d)  is the relative product topology inherited from R x ~'~'); a 
slightly stronger topology is that of eventwise convergence. In the setting of 
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Example 2.1 (2) above, these are the same, and correspond to the weakest 
topology making simple measurable functions continuous (as functionals); 
this coincides with the topology induced by the continuous functions iff the 
Hausdorff space in question is a finite set with its discrete topology. Indeed, 
the following has been observed by Cook: 

Lemma 2.2. The following are equivalent: (1) f~ is eventwise compact; 
(2) ~ is pointwise compact; (3) d is locally finite. 

If f~ is compact in a given locally convex topology, so is the unit ball 
of V. Hence if d is locally finite, then V(d)  is the dual of Lo(d). The 
converse is false [consider Example 2.1(1)]. The condition that V(d)  be the 
dual of Lo(d) was studied by Cook (1985). We propose to call a quasi- 
manual d satisfying this condition discrete. Thus, any locally finite quasi- 
manual is discrete, as is the classical manual ~ ' =  {E} of Example 2.1(1). 
Also, the frame manual of a separable Hilbert space H [Example 2.1 (4)] is 
discrete, since l t 's  self-adjoint trace class is the dual of the space of finite- 
rank self-adjoint operators on H. 

Lemma 2.3. Let V be a base-normed space with positive cone C and 
unit ball U. If r is any linear topology on V in which C is closed, then C c~ U 
is r-compact iff U is r-compact. 

Proof Trivially, (1) implies (2). Conversely, suppose the positive part 
C c~ U of V's unit ball is r-compact. Let xx be a net in the unit ball. Then 
(Alfsen, 1971, Proposition II.3.1) there can be found for each Z positive, 
elements Yx and zx of V with xx=yx - zx and [Ix~[I = Ilyzll + [Izzll--in particu- 
lar, yx and zz belong to C n  U. Choose r-convergent subnets Yx' and zx, 
(identically indexed), and observe that the subnet xx, is also r-convergent to 
an element of U. �9 

Discreteness guarantees that ~ has many extreme points (i.e., pure 
states). The following simple application of Choquet theory allows one to 
recover the remaining states as "mixtures" of the pure states. 

Proposition 2.4. Let d be discrete and contain at least one countable 
operation. Then 0f~ can be made into a measurable space in such a way that 
for every co ef~ there exists a probability measure m on 0f~ such that for all 
xeX(W), 

to(x) = ~on v(x) dm( v) 

Proof. Let A denote the positive part of the closed unit ball of V(d).  
Let ~o denote the trace on OA of the field of Baire sets, i.e., the o'-field 
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generated by sets f -1  (0) c~ OA where f is a continuous real-valued functional 
on A. The Bishop-DeLeuw theorem (Alfsen, 1971, Theorem 1.4.14) yields 
for every co cA a probability measure m on ~o such that for all continuous 
affine functionals f on A, f(co) = S~,x f(v) din(v). Let co e ~ ( a ' )  _~ A; If f= f~  
for some x in X, we obtain co(x)=SoA v(x) dm(v). Now, 0if2 is 0A less the 
single extreme point 0. Let E =  {x,,lneN} be a countable operation in d ,  
and let f,=J~x,...,x,} for n=  1, 2 , . . . .  Then f ,  is continuous on A, and hence 
{0} = N ,  f~-l(0) is a Baire set. Hence, tgf~ is an element of ~o, whence 

f o^f.(v) dm(v)= fanf.( v) dm (v) + f {ol f.(v) dm(v)= ~onf.(v) dm(v) 

Finally, since lira. f.(co) = 1, we have m({O}) =0, i.e., m(Of2 ) = 1. �9 

3. THE SIGNED WEIGHT SPACE OF A TENSOR PRODUCT 

The following constructions were introduced by Foulis and Randall 
(1981). Given a pair of quasimanuals d and :~, define a compound opera- 
tion as follows: First, execute a given EEd; obtaining the outcome xsE, 
execute a preselected operation Ex~g. Upon obtaining outcome y~Fx, 
record the ordered pair (x, y) as the outcome of the compound experiment. 
If we adopt the notation xy for an ordered pair, writing AB for A x B and 
xA for {x} x A, the sample space for such a compound experiment is 
Ux~E xFx. The collection of such experiments forms a quasimanual denoted 
by d ~ .  Notice that U d ~  =xY, where X and Y are the outcome sets of 
d and g ,  respectively. Call a compound experiment whose second compo- 
nent is independent of the outcome of the first--i.e., a set EF a product 
operation. The collection of product operations is a subquasimanual of r i g ;  
if the notational abuse may be forgiven, we will denote it by d • g .  Note 
that since U ( d  x ~ )  =xY, states on d ~  are states on d x ~'. The proof 
of the following is straightforward: 

Lemma 3.1. Let coeF2(dx~) .  Then c o ~ ( d ~ )  if and only if 
co(xF) :=~.y~p co(xy) is independent of the choice of F ~ ' .  

Clearly, cot(x):= (co(xF))-rco(xy) is the conditional probability that x 
occurs (upon execution of some E containing x), given that the operation F 
is (has been, is to be) executed. Thus, co is a state on d ~  iff the probability 
of securing a given outcome of ,d is independent of which operation in 
is executed. We say that such a weight exhibits no influence of :~ on d .  

One defines compound operations "in the other direction" by intro- 
ducing a map rr:YX~XY given by ~r(yx)=xy, and then letting 
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~r = ~r(~r States on ~r are states on d x ~ displaying no influence 
of ~r on ~.  The pre-tensor product of d and ~ is the quasimanual 

Evidently, d x ~ ~ d ~  and t ~ ( d ~ )  consists exactly of those states to on 
~r x ~ that exhibit no influence of either of d and ~ on the other. 

Lemma 3.2. V+(d~) consists of those nonnegative functions co on X Y  
such that (i) co is summable over every d x & operation, and (ii) to(- y) 
and co(x. ) are d -  and ~-weights, respectively, for every ye  Y and every 
xeX. 

Proof. Since d x ~ d ~ ,  every positive weight on the latter is sum- 
mable over product operations. If co is such a weight and xeX  is fixed, 
co(x. ) is a positive weight on ~ by Lemma 3.1 ; similarly, to(. y) is a positive 
weight on ~r for every fixed ye Y. Conversely, suppose co : X Y ~ R  is non- 
negative and surnmable over elements of d x ~.  Then for all E e d ,  Fe~,  

co(xy)=~' .[r~eco(xy)]=~[~co(xy)  ] 
xye~EF x~.g J y~FI - - x~g  

If co is a weight in each variable separately, the sum is independent 
of both E and F, i.e., co is a nonnegative d x ~-weight. By Lemma 3.1, 
we V+(d~). �9 

In general, the pre-tensor product d ~  of manuals d and ~ is not a 
manual, nor even a premanual. On the other hand, if d and ~ are unital, 
then so is d ~ ,  and we may therefore form the tensor product sr | ~ = 
( d ~ ) .  Notice that ~ ( d  | ~ )  = ~(~r hence, V(d  | 8)  = V(W~). 

Given a pair of unital orthoalgebras 1-It and 1"I2, one defines their ten- 
sor product as follows (Lock, 1981): Let d be the manual of finite parti- 
tions of the unit in l-It, ~ that of finite partitions of the unit in 1-I2, and 
(since these manuals are unital) form ~ r 1 7 4  One then defines 
H, | 172:= l-l(d | ~).  As a consequence of Lemma 3.2, one has the follow- 
ing result. 

Theorem 3.3. The state space of a tensor product I I t |  FI2 of ortho- 
algebras is the set of states on 1-It x II2 whose marginals are measures. 

Given two measurable spaces (S, Z) and (T, E), one may form the 
tensor product of their affiliated partition manuals and compare this to be 
partition manual of the field product (S x T, Z | E). Lock (1981) has shown 
that the logic of the former is a Boolean algebra isomorphic, not to E | E, 
but rather to the clopen field of the product of the Stone spaces of X and .~. 
On the other hand, as pointed out in Randall and Foulis (1981), the state 
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spaces of these manuals are essentially the same. When we deal with measure 
algebras matters become more complicated: Certainly, every measure on 
the field product of two measure algebras gives rise to a measure on the 
corresponding orthoalgebraic tensor product, but, as the following example 
shows, there will in general be measures on the latter not corresponding to 
any measure on the former. 

Example 3.4. Let/l  be Lebesgue measure on [0, 1], let E be the algebra 
of Lebesgue measurable subsets of [0, 1], and let Z/p be the associated 
measure algebra. Let D be the diagonal of [0, 1] x [0, 1] and let ~ denote the 
linear Lebesgue measure on D. Let co be the function on Z x Z given by 
co(A, B) = k  ((A x B) n D). Since co(., �9 ) is a/l-absolutely continuous meas- 
ure in each variable separately, co is well-defined on Z//t • Z/p,  and extends 
uniquely to a state on the orthoalgebraic tensor product of Z//a with itself. 
However, as co is not absolutely continuous with respect to two-dimensional 
Lebesgue measure, co does not lift to the field product Y./p | Z/p. 

Lemma 3.2 can be "linearized" as follows: 

Lemma 3.5. V+(d~) is affinely isomorphic to the set of separately 
weak*-continuous, positive bilinear forms on V*(d)  x V*(~). 

Proof. Let coeV+(~g) .  If g~ V*(g), define &(g)(x)=g(co(x,')); 
clearly, o3(g) belongs to V+(~r Hence, define ~ , ( f ,  g) =f(a3(g)) for every 
fE V*(~r and ge  V*(g). Now, ~ is bilinear; by construction, it is weak*- 
continuous in f for fixed g. Since the construction is essentially symmetric 
in f a n d  g, ~ ,  is also weak*- continuous in g for fixed f. The map c0 ~--~, 
is clearly affine, and, since �9 is separately weak*-continuous, an injection. 
To see that it is a surjection, define, for a given separately weak*-continuous 
positive bilinear form ~, a function co(x,y)=~(fx,fy). The continuity 
assumption ensures both that co is summable over d x & operations and 
that co(x. ) and r y) are weights. By Lemma 3.3, co is a positive weight 
on ~r | ~ ;  evidently, �9 = ~o,. II 

If Vand Ware normed spaces, let B( V, W) denote the space of bounded 
bilinear forms on Vx W. If V and W are arbitrary base-normed spaces, let 
V .  Wdenote the subspace of B( V*, W*) generated by forms �9 > 0 that are 
weak*-continuous in each variable separately. Order V ,  W by the cone of 
positive separately weak*-continuous forms, and take as a base for this cone 
the set 

~= {~ V, Wl~(e, , e2) = I} 

The space V .  W is canonically isomorphic to the space of regular weak*- 
to-weakly continuous operators from V* to IV. We will confuse the two 
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spaces, identifying forms with operators and vice versa without further 
comment. 

Theorem 3.6. V(~Ct~) is isomorphic as a base-normed space to 
V(d)  �9 V(~). 

Proof This follows from Lemma 3.5 and the construction of 
V .  W, since cone-base spaces having affinely isomorphic cone-bases are 
isomorphic. II 

In particular, that V(d )  �9 W(:~) is complete follows from the complete- 
ness of V ( d ~ ) .  We digress to show that V .  W is complete for arbitrary 
complete base-normed spaces V and W. 

If (V, B) is a complete base-normed space, then its cone-base B is o--con- 
vex in the sense that, for any sequence of  coefficients ti> 0 with ~ t;= 1, and 
for any sequence v~ in B, the convex series ~ t~v~ is norm-convergent to an 
element of B. Conversely, it can be shown (Riittimann and Schindler, 1987, 
Theorem 2.8) that if there is any Hausdorff linear topology r on B such that 
every convex series in B is r-convergent to an element of B, then V is 
complete. 

Lemma 3. 7. Let V and W be complete base-normed spaces. Then V ,  W 
is a complete base-normed space. The base norm is no smaller than the norm 
corresponding to the operator norm. 

Proof That f~ is a cone-base is clear; and V �9 W is positively generated 
by defnition. The operator norm of a positive e lementfof  V �9 Wis ]1 f(e)I[-- 
i.e., coincides with its base norm. Hence, the base-norm unit ball of V ,  W 
is at least as small as the unit ball of B+(V, W), i.e., the base norm is no 
smaller than the operator norm. To see that V ,  Wis complete, we will show 
that its base f~ is o--convex with respect to the topology corresponding to 
the pointwise convergence of bilinear forms on [0, el] • [0, e2]. If ~i~f~ 
and ti are convex coefficients, then for every fe[0 ,  el] and gE[0, e2], 
Y,~ tflp~(f, g) is a convex, hence convergent, series in the real interval [0, 1]; 
thus y,; t~ i  converges pointwise on [0, eli • [0, e2] to a bounded biaffine 
function �9 on [0, el] x [0, e2], which then lifts to a bounded bilinear func- 
tional on V* x W*. Now, for fixed f ,  the series ~; b~(f ,"  ) is a convex series 
in the positive part of W's unit ball, hence converges in norm to an element 
of W. It follows that ~ ( f ,  �9 ) is weak-* continuous in the second argument 
for any f e  V. Likewise, ~ ( . ,  g) is weak-* continuous for all g~ I4", m 

If  V is finite-dimensional, then every linear operator V * ~  W is 
weak*-to-weakly continuous. Thus we have the following strengthening of 
Theorem 1.1 : 
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Corollary 3.8. If either of V(d) or V(~) is finite-dimensional, then 

V(d~) -~ V(d) | V(~) 

As a further application of Theorem 3.6, we will show (Theorem 4.2) 
that the tensor product of discrete manuals is again discrete. 

Kl~iy, Randall, and Foulis applied their theorem to characterize 
the states on a tensor product of finite-dimensional complex frame man- 
uals as the trace-I operators W on the tensor product of the associated 
Hilbert spaces satisfying the condition of positioity on pure tensors: 
(W~b| V/, ~b|  for all vectors ~b, V. Elsewhere (Wilce, 1990) the 
authors used Theorem 3.6 to extend this result as follows: 

Example 3.9. Let d and ~ be the frame manuals of two separable 
complex Hilbert spaces H and K, respectively (each of dimension at least 
3). Let ~h and ~l,h denote, respectively, the space of bounded self-adjoint 
operators on H and the self-adjoint trace-class of H. Then V+(d~) is iso- 
morphic to the space of weak*-to-weakly continuous positive linear maps 

~h(H) -+ ~l,t,(K) 

Such a map gives rise to a linear operator 

A : H | 1 7 4  

which satisfies the positivity condition (Ax | ~, y |  _~0 for all x~H and 
all yeK. If it is Hilbert-Schmidt, A gives rise in turn to an operator W on 
H |  such that (Wx|174 for all x e H  and y~K. Conversely, 
any Hilbert-Schmidt operator on H | K satisfying the indicated positivity 
condition and having trace-class marginals gives rise to a Hilbert-Schmidt 
operator A as above. In particular, every element of the quantum mechanical 
state space, i.e., every density operator on H | K, corresponds to an element 
of ~ ( d ~ ) .  [Even in the finite-dimensional case, however, the inclusion is 
proper (cf. Klfiy et al., 1987)]. 

4. TENSOR PRODUCTS OF SIGNED WEIGHT SPACES 

In this section we consider the spaces V ( d ) |  V(~), as embedded in 
V(d~) ,  and Lo(d) |  Lo(~), as embedded in Lo(d~). We begin with a 
review of ordered tensor products, following the survey paper of Wittstock 
(I 974), to which we direct the reader for additional information. We require 
the notion of a regularly ordered normed space: An ordered normed space 
V is regular iff - u < v < u  implies Ilvll-<llull for all u, veV, and Ilull = 
inf{ II vii Iv-> u, - u } .  It is not difficult to see that any base-normed or order- 
unit normed space is regular. More generally, it is a standard result that any 
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positively generated normed space whose norm is monotone possesses an 
equivalent regular norm. 

Let V and W be regularly ordered normed spaces. We may represent 
the algebraic tensor product V| W either as a space of bilinear forms or as 
a space whose dual consists of bilinear forms. That is, we may embed V@ W 
in B +( V*, W*) or in B +( V, W)*. The order structures associated with these 
two representations are different: As a space of bilinear forms, V| W is 
ordered by the cone Ci consisting of all r ~ V |  W such that ( r , f |  
for all positive functionals f e  V* and g~ W*. The cone Ci is closed with 
respect to the norm inherited from B(V, W). A standard argument using 
the Hahn-Banach theorem shows that the positive cone of V| W as 
embedded in B( V, W)* is the closed convex hull C r := c--6-~( V+ | W+) of the 
set of pure tensors of positive elements of V and W [the closure taken with 
respect to the norm inherited from B(V, W)*]. The norm of B( V, W)* and 
that of B(V*, W*) are monotone on the cones Cp and Ci, respectively, so 
one may form the associated regular norms I1" I1~ and I1" I1~. The resulting 
(regular) ordered normed spaces (V|  W, Cp, I1" I1~) and (V|  W, Ci, I1" 113 
are the projective and injective ordered tensor products of V and W. We 
denote them by V| W and V| W, respectively. 

If V and W are order-unit normed spaces having respective order units 
ej and e2, then V| Wand V| Ware both order-unit normed with order 
unit e = ej @ e2. If V and W are both base-normed, with respective dual 
order units ej and e2, then both V| Wand V| Ware base-normed, with 
bases e-l(1) c~ C~ and e-I(1) c~ Cp. [Here e is the unique functional on V| W 
determined by the condition e(v, w)= el(v)e~(w).] 

It will be important that, for any (regular) ordered normed spaces V, 
W, and B, any bounded positive bilinear form ~:  Vx W ~ B  remains 
bounded and positive as a linear map ~b:V| W~B.  In particular, 
(V| W)* is isomorphic to the positively-generated part B+(V, W) of the 
space of bounded bilinear forms on V • W. Also important is the observation 
that, if V and W arise as spaces of functions--say, as subspaces of R x and 
R r, respectively, ordered pointwise--then the pointwise order on V| W as 
a subspace of R xr  coincides with that of V| W, regardless of the particular 
representation of V and W as function spaces. 

Lemma 4.1. The image of V(~r174 V(&) in V(~C&) is linearly and 
order-isomorphic V| W. This last is pointwise dense in V(d~) .  

Proof The first statement is immediate from the preceding remark. 
Since pure tensors separate the points of V * ( d ) |  V*(~), the algebraic 
tensor product is weak* dense in (V*(~r174 V*(~))*. This last is iso- 
metrically isomorphic to positively generated part of the space of bounded 
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bilinear forms on V*(~/) x V*(g), hence, by Lemma 3.6, contains V(~/~). 
The density claim now follows. �9 

Ideally, one would like to obtain a density result for V(d)  | V(g) in 
terms of the ordered injective tensor norm. Even in the case that both factors 
are of the form L~(p), this is not possible: Again, the weight co of Example 
3.5 provides the counterexample. Having absolutely continuous marginals, 
to defines an element of V ( ~ g ) ;  however (Wittstock, 1974, Theorems 
4.5 and 4.7), 

L,(/t) ~ ,  L, (/t) -~L,(p) ~,~ L,(/l) ~L, (u  x U) 

The latter contains no element corresponding to co. 
We come now to the principal result of this paper: 

Theorem 4.2. If d and ~ are discrete, then ~r is also discrete. More- 
over, L o ( d ~ )  is norm- and order-isomorphic to Lo(~) | Lo(~). 

Proof Let ~b: V ( d & ) ~ L o * ( d g )  be the bounded, positive injection 
given by ~b(oO(f)=f(co) (coe V, feLo). We will show that ~b is a surjection 
by exhibiting its inverse. 

The representation of V ( ~ g )  as V(~) �9 V(~) (Theorem 3.6) yields a 
bounded bilinear map 

~,: V*(~e) • v*(~)  -~ v*(~e~) 

given by g( f ,  g)(co) = ~o,(f, g), 0o, being the bilinear form representing the 
signed weight co. The restriction of g to Lo(~l)x Lo(~) is bounded, and 
hence lifts to a bounded and, clearly, injectivc--linear map 

~g:Lo(d) | Lo(g) ~ V*(dg) 

If fELo(d) and geLo(~@) are given by f=~.A~ I aAfA and g=~n~s fin f8 for 
some finite collections I and J of events, then 

~ ( f , g ) =  ~'. aAflnfAn 
A~I ,B~J  

Thus, the range of ~ is contained in Lo(~gO. Since fxy = ~(f~,fy) for all 
x~X(d),  y~X(g), ~'s range in fact equals Lo(~g). Since ~, is bounded 
and positive as a bilinear form, it remains positive on the projective tensor 
cone. It follows now that we have a bounded, positive bijeetion 

~*: Lo*(dg) ~ B+(Lo(.S~), Lo(Cg)) 

Now if 0 is a positive bounded bilinear form in B+(Lo(~), Lo(~)), define 
a function co(xy)=O(f~,f~) on XY, and notice that, since ~r and ~ are 
discrete, this function is a positive weight in each variable separately. For 
any finite events A of ~r and B of ~, ~-,,o,~,~n co(xy) =O(fA ,fn) < IlOII < co. 
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Since the net of finite rectangular events AB is cofinal in the net of all finite 
events of d x ~ ,  co is summable over d & .  Thus, by Lemma 3.2, co is a 
positive weight on d ~ .  Notice that co = 0 iff �9 = 0. Thus, we may regard 
~* as a bounded, positive injection L*(d&) ~ V(d~). Evidently, for any 
fixed co and outcomes x and y, we have 

~,*(r (co))(xy) = ~ (co) (v(L  |  =fxy(co) = co(xy) 

whence ~t* o ~b is the identity on V(~r Similarly, q~ o ~,* is the identity 
on L*o(d~). It follows that d ~  is discrete. This also establishes that V(~ '~)  
is isomorphic to the positively generated part of the space of bounded 
bilinear forms on Lo(d) • Lo(~), from which we conclude that ~t is an order 
isomorphism: If  ~ t ( r )>0 for some tensor r, then 

0_< v,(r)(co) = ~,*(co)(r) 

for all positive weights co e V+. Hence, for all positive bilinear forms ~, 
�9 ( r ) > 0 ,  whence reCp.  Finally, since the projective tensor norm on 
Lo | Lo is exactly that induced by the base norm on B+(Lo, Lo), ~t is an 
isometry. [] 

We conclude with some remarks concerning the state space of d ~ .  If  
F and K are the respective cone-bases of base-normed spaces V and W, 
denote the cone-bases of V| W and V@; W by F | K and F | K, of F 
and K. Notice that if V(d) and V(~) are finite-dimensional, then, by 
Corollary 3.8, 

f ~ ( . ~ )  ___ ta(~r | ~ ( ~ )  

Let F = f~(d)  and K = f~(~). If d and ~ are locally finite, F and K are 
compact by Lemma 2.1. Namioka and Phelps introduce two tensor products 
for compact convex sets, as follows: Recall that any compact convex set F 
may be identified with the state space of the order-unit space A(F) of con- 
tinuous affine functionals on F. The (compact) convex sets F [] K and F A K 
are defined to be the state spaces, respectively, of the order-unit spaces 
A(F)  | and A(F) |  Since F = f ~ ( d )  and K = f ~ ( d )  are the 
state spaces of the order-unit spaces Lo(d) and Lo(Y)), it follows that 
/So (d )=A(F)  and Lo(~)=A(K). Thus, by Theorem 4.2, the state space 
f ~ ( d ~ )  is f~(d)  [] f~(&). It is known that F [] K is a simplex if F and K 
are simplices. Theorem 4.2 allows us to obtain a slightly stronger result for 
(not necessarily compact) state spaces of discrete quasimanuals. 

Theorem 4.3. If  d and .~ are discrete and both f~(d)  and f~(&) are 
simplices, then f~(d&)  is also a simplex. 
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Proof It is sufficient to show that V(d~) is a lattice. A theorem of 
Davies (1968) asserts that the dual of an ordered Banach space L is a lattice 
iff L is regular and enjoys the Riesz interpolation property. Observe that, as 
the spaces Lo and Lo have monotone norms, they can be equivalently 
renormed so as to be regular (obviously, this has no effect on their order 
structure, nor on that of their duals). Since V(d) and V(~) are lattices, 
both Lo(d) and/So (~) have the Riesz interpolation property. By Wittstock 
(1974, Theorem 3.3), the projective ordered tensor product L-o(d) | 
is a regular ordered space having the Riesz interpolation property. Its dual 
B+(Lo(d), Lo(~)), which Theorem 4.2 identifies as V(d:8), is therefore a 
lattice. [] 

If f~ (d~)  is to serve as a model of two separated systems described 
individually by l'~(d) and f~(~), then it is important to characterize the 
extreme points of f~ (d~)  in terms of those of ~ ( d )  and f~(g~). As observed 
by Kl~iy et al., Corollary 3.8 implies that 

gt(d2~) _~ Aft(af t (d)  @ ~ ( ~ ) )  

[This provides, incidentally, a negative answer to the question raised by 
Namioka and Phelps (1969), of whether the projective tensor product F A K 
of two compact convex sets need be a face of F [] K.] Even in the finite- 
dimensional case, we have no real understanding of which affine combina- 
tions of pure tensors of extreme weights are extreme--indeed, this is a prob- 
lem of long standing concerning the [] product of the tensor product of 
compact convex sets. The situation is already very involved when d and 
are finite-dimensional flame manuals: If W = ~ = ~(C") ,  then (by Corollary 
3.8), the problem amounts to that of characterizing the set of positive linear 
operators ~b:M, ~ M, on the algebra of n x n complex matrices such that 
r has unit trace. This is nontrivial even when n = 2 (Choi, 1975). 

ACKNOWLEDGMENTS 

This paper represents a portion of the author's doctoral dissertation at 
the University of Massachusetts, written under the direction of D. J. Foulis. 
The author wishes to thank M. K1/iy and G. R/ittimann for helpful 
conversations. 

REFERENCES 

Alfsen, E. (1971). Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin. 
Choi, M.-D. (1975). Linear Algebra and its Applications, 10, 285-290. 
Cook, T. (1985). International Journal of Theoretical Physics, 24, 1 l 13-1131. 
Davies, E. B. (1968). Transactions of the American Mathematical Society, 131, 544-555. 



1928 WHce 

Davies, E. B. (1976). Quantum Theory of Open Systems, Academic Press, London. 
Foulis, D. J., and Randall, C. H. (1981). Empirical logic and tensor products, in Interpretations 

and Foundations of Quantum Mechanics, H. Neumann, ed., Bibliographisches Institut, 
Wissenschaftsverlag, Mannheim, Germany. 

Gudder, S. (1988). Quantum Probability, Academic Press, San Diego, California. 
Kl~iy, M., Randall, C., and Foulis, D. (1987). International Journal of Theoretical Physics, 26, 

199-219. 
Lock, R. (1981). Constructing the tensor product of generalized sample spaces, Ph.D. Disserta- 

tion, University of Massachusetts. 
Mackey, G. (1965). Mathematical Foundations of Quantum Mechanics, Addison-Wesley, 

Reading, Massachusetts. 
Mieinik, B. (1968). Communications in Mathematical Physics, 9, 55-80. 
Namioka, I., and Phelps, R. (1969). Pacific Journal of Mathematics, 9, 469-480. 
R~ittimann, G., and Schindler, C. (1987). Bulletin of the Polish Academy of Science, Mathemat- 

ics, 35, 585-595. 
Wilce, A. (1990). International Journal of Theoretical Physics, 29, 805-814. 
Wittstock, G. (1974). Ordered normed tensor products, in Foundations of Quantum Mechanics 

and Ordered Linear Spaces, H. Neumann, ed., Springer Lecture Notes in Physics. 


